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ABSTRACT dB

EMI

High bandwidth, immunity to electromagnetic inter- EPAD
ference, and potential weight savings have led to the
development of fiber optic technology for future FBL

aerospace vehicle systems. This technology has been FCC
incorporated in a new smart actuator as the primary F.O.
communication interface. The use of fiber optics
simplified system integration and significantly g
reduced wire count. Flight test results showed that
fiber optics could be used in aircraft systems and
identified critical areas of development of fly-by- gm
light technology. This paper documents the fiber HIL

optic experience gained as a result of this program, IBIT
and identifies general design considerations that
could be used in a variety of specific applications of Ibox
fiber optic technology. Environmental sensitivities of I/O

fiber optic system components that significantly L/H ail
contribute to optical power variation are discussed.
Although a calibration procedure successfully LVDT

minimized the effect of fiber optic sensitivities, more M
standardized calibration methods are needed to mils
ensure system operation and reliability in future NASA
aerospace vehicle systems.
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NOMENCLATURE

ram

act actuator RCVR

ch channel R/H ail

cmd command RT

CCDL cross-channel data link rad

DDV direct drive valve SAct

DFRC Dryden Flight Research Center SMA

DCI Dynamic Controls Incorporated, SOV

Dayton, Ohio SRA

decibels

electromagnetic interference

electrically powered actuation design

fly-by-light

flight control computer

fiber optic

normal acceleration (the standard

acceleration of gravity of
9.80665 m/sec 2)

grams

hardware-in-the-loop

initiated built-in test

interface box

input/output

left-hand aileron

linear variable differential transformer

Mach number

thousandths of a inch, 0.001 in.

National Aeronautics and Space
Administration

position

dynamic pressure, Ib/ft 2

actuator cylinder position

receiver

right-hand aileron

remote terminal

radians

smart actuator

subminiature A-type connector

solenoid-operated valve
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sec

std

Vdc

WPAFB

XMTR

I.tW

MIL-STD-
1553

1773

seconds

standard

Volts, dc

Wright Patterson Air Force Base,
Dayton, Ohio

transmitter

angle of attack, deg

microwatts, one millionth of a watt

Digital Time Division Command/
Response Multiplex Data Bus
(Military Standard)

nonstandard fiber optic
mechanization of digital time
division command/response
multiplex data bus

INTRODUCTION

Development programs for fighter aircraft, as well as
new large transport aircraft, have identified fiber optic
technology as an integral component of future
aircraft systems. Conventional fly-by-wire system

configurations often require unique interfaces for each
flight control surface actuator, which results in a large
amount of wiring. Fiber optics has been considered for
aerospace vehicle applications because it has high
bandwidth capability, immunity to electromagnetic

interference (EMI), and significant weight savings.
Although fiber optics has been successfully used in the
telecommunications industry, the application of this
technology to aircraft systems has been limited.

The NASA Dryden Flight Research Center (DFRC),
Edwards, California, became involved in fiber optics

through the smart actuator program. The primary
objective of this program was to demonstrate local

closed-loop control of a flight control surface actuator
using miniaturized smart electronics as an integral part

of the actuator assembly. Because the actuator used
fiber optics, a second objective was to determine the

suitability of fiber optics for aircraft system
architectures. The smart actuator development was a
joint initiative by the Naval Air Warfare Center-
Warminster, now located at Patuxent River, Maryland,

and Wright Patterson Air Force Base (WPAFB),

Dayton, Ohio. The actuator was designed to be a fit,
form, and functional replacement of the F-18 aileron
actuator, and was manufactured by HRTextron,

Incorporated, Valencia, California.

The smart actuator was the first of three advanced

actuators to be flight tested at the NASA DFRC as part
of the Electrically Powered Actuation Design (EPAD)
program. This flight test program was successful in
demonstrating the feasibility of local closed-loop
control of a surface actuator. However, a great deal of

experience with fiber optics was also gained through
system integration tests and environmental tests. This
paper documents the lessons learned and the methods
employed to ensure the operation of the fiber optic
data links in the smart actuation system. In addition,
general design considerations that could be used in a
variety of specific applications of fiber optics are
presented.

SMART ACTUATOR DESIGN

DESCRIPTION

The smart actuator (fig. 1) was designed to satisfy the

production F- 18 aileron actuator operational
requirements shown in table 1. The actuator utilizes a
simplex hydraulic supply and is designed to be a fit,
form, and functional replacement of the standard F-18
aileron actuator. The actuator design incorporates a
direct drive valve (DDV), and two independent
electronic modules that perform servo-loop control,
fault monitoring, and redundancy management. Each
electronic module is commanded by a separate
channel of the aircraft flight control computers
(FCCs). The operational modes of the actuator are fail-

EC93 41023-13

Figure 1. HR Textron smart actuator.



operate/fail-safefor electrical failures.The fail-
operatemodeof the smartactuatorresultsin the
continuedoperationafter the detectionof a single
channelfailure. A secondaryfault will causethe
reversionto thefail-safemodewhichis trail-damped,
identical to the standardF-18 aileron actuator.
Reference[1] providesa detaileddescriptionof the
smartactuatordesign.

Table1:GeneralF-18aileronactuatorrequirements.

Outputtravel +2.25 in. (mechanical)

+2.19 in. (electrical)

Output ram velocity + 6.70 in./sec
(no load-open loop)

+12,093 Ib compression (full retract)
Output force

Operational

temperature

(ambient air)

+13,106 Ib tension (full extend)

-65 °F to + 160 °F (continuous)

220 *F (10 min)

240 °F (2.5 min)

Operational
temperature -20 °F to +275 °F (operating)

(hydraulic oil)

Altitude sea level to 70,000 ft

Figure 2 shows the major components of the smart
actuator [1]. In addition to the two channel-control
electronic modules, a third module is included in the
electronic stack for electrical power conditioning. This
module is dual redundant with each power channel
physically separated internally. Also illustrated is the
fiber optic communication interface for each channel
of the smart actuator. Each electronic channel has

two fiber optic connectors; one for data transmission
and one for data reception. The electro-optical
components of the fiber optic data link incorporate a
subminiature A-type (SMA) connector interface.
Because the connector is an integral part of the optical
transmitter and receiver, these components are
mounted on the front panel of each electronic module
enclosure. As a result, the transmitter and receiver are

located directly behind the front connector panel of
each control channel module and in close proximity to
module seams. Although fiber optic cables may be
immune to EMI, particular attention should be

made in the selection of low-power electro-
optic components to minimize potential EMI
susceptibility [2].

Electrical power (28 Vdc) is provided to the actuator
through a connector located on the top of the
manifold (fig. 2). System redundancy is achieved
by electrically isolating the electronic control

Direct
drive
valve

Electrical power
connector

Channel 2 I
electronics -_
Channel 1 "

electronics _

\ i
Electrical power

conditionin

Fiber optic data
bus interface
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Figure 2, Smart actuator components (reference [1]).
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modules.Eachmoduleis suppliedwith individual
28 Vdc aircraft power lines, and cross-channel
communicationis providedthroughopticalisolators
forelectricalseparation.

Thesystemarchitecturefor a single channel of the
control electronics is shown in figure 3 [1]. Fiber optic
communication is accomplished through optical
transceivers. The external interface of the electronic

modules could have followed the Military Standard
Digital Time Division Command/Response Multiplex
Data Bus (MIL-STD-1553)[3], as well as any other
type of serial interface specification. In this case, an
optical transmitter and optical receiver provide the
signal conversions for the electrical MIL-STD-1553
interface. The fiber optic transmission of the
MIL-STD-1553 data is a nonstandard 1773 message
transmission protocol developed by HRTextron
specifically for this program. For the purpose of
further discussions, this nonstandard fiber optic
communication will be referred to as 1773.

The actuator fail-safe condition is the trail-damped
mode. This mode is engaged when the control
channels release a bypass valve located in the actuator
manifold. The bypass valve restricts the rate at which
the actuator moves in response to aerodynamic loads
on the aileron control surface. Because the bypass
valve is a solenoid-operated valve (SOV), electronic
release of the bypass valve is accomplished by turning

off the SOV electrical power. The bypass valve is
opened by a return spring in the manifold. As an added
safety measure for flight test purposes, the SOV circuit
includes an override switch located in the aircraft

cockpit for manually disabling the actuator.

AIRCRAFT INTEGRATION

The smart actuator was installed on the NASA F-18

Systems Research Aircraft (SRA); tail number 845
(fig. 4). This aircraft has been used extensively as a test
bed facility for aircraft systems research. The smart
actuator was installed in the left aileron actuator bay
(fig. 5). To accommodate the electronic modules,
production 3/8 in. diameter hydraulic lines were
replaced with 1/4 in. diameter lines and rerouted over
the top of the actuator. This modification slightly
degraded the performance of the actuator and will be
discussed later.

To accommodate rapid system integration and flight
test requirements of the SRA, modifications to the
production F-18 FCC's were prohibited. As a result,
an interface box developed by Dynamic Controls,
Incorporated (DCI), Dayton, Ohio, provided the
electrical interface for the flight control computers and
the fiber optic interface for the smart actuator. To meet

F-18 redundancy requirements, two interface boxes
were used for aircraft integration. The interface box
provided real-time system data to the aircraft
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Figure 3. Smart actuator control channel architecture (reference [1 ]).
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Figure 4. NASA F-18 Systems Research Aircraft.

EC93 42065

EC93 42064-3

Figure 5. Smart actuator installation.



instrumentationsystem.Figure6 showsthe smart
actuatorsystemconfigurationontheF-18SRA.

The interfaceboxprovidesa meansto controlthe
operationalmodesof thesmartactuator.Therequired
cockpit modificationsfor this function were the
installationsof a pilot overrideswitchanda system
controlpanel.Theoverrideswitchprovidesthepilot
withadirectmethodof forcingthesmartactuatorand
the interfaceboxesto the fail-safemode.Actuator
power,interfaceboxmodesettings,initiatedbuilt-in
tests(IBIT),andsystemresetswerecontrolledthrough
theuseof thesystemcontrolpanel.

INTERFACE BOX DESIGN
DESCRIPTION

Figure 7 shows the interface box. This box was
designed to meet the following basic system
requirements:

• Provide the smart actuator fiber optic interface

• Provide the FCC electrical interface.

• Provide pilot interface for system control and
override capability.

• Provide real-time system data to the aircraft

instrumentation system.

This interface box provides a fiber optic interface by

using the identical optical transmitter and receiver as

those used in the smart actuator. The connector portion

of these components can be identified on the front

panel of the enclosure by the labels "T" for transmitter

and "R" for receiver. For the purposes of bus

communication, the interface box is designed to act as

the 1773 bus controller, while the smart actuator is

designed as a remote terminal (RT).
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EC93 41023-9

Figure 7. DCI interface box.

Figure 8 shows the functional block diagram of the
FCC to interface-box integration. The functional block
is comprised of three sections: FCC software, FCC
hardware, and interface box hardware. Since the smart

actuator performs local closed-loop control functions,
absolute position commands need to be provided to
the smart actuator by the interface box. Delta position
commands to the actuator exit the FCC servoamplifier
hardware and enter the interface box hardware. The

interface box analog hardware contains a high

response actuator model that converts the delta
command to an absolute actuator position. The
actuator model output signal is used as the position
command for the smart actuator. In this way, the
interface box is able to generate a test actuator position
command for transmission to the smart actuator with

minimal latency.

The actuator model output is used as a position
feedback signal to the FCC actuator control loop. The
FCC is not provided with the actual position of the
smart actuator, and therefore cannot detect actuator
failures. The electronic modules of the smart actuator

perform all servoredundancy and servocontrol-loop
functions. However, as in the actuator design, the
interface box includes an SOV-like discrete signal as a
manual override command for flight test purposes. If
the smart actuator detects a failure internally or upon
selecting the override switch, the interface box will
automatically open the position feedback signal to the
FCC (fig. 8). This action triggers the control loop
failure-monitoring functions of the FCC and opens the
actuator bypass valve, forcing the system to the fail-
safe condition.

The interface box design also provides system
commands to the actuator. Through the use of a
cockpit control panel, the interface box can command
system modes, including IBIT. The interface box
accesses system health information from the smart
actuator through the 1773 data interface and echoes

FCC

software

Aileron

command

in.

FCC

hardware

Current Servo

limit amp

S/294 + 1

1.207

S/356 + 1

Limit

Interface

box

hardware

(S/303) + 1

(S/3030) + 1

Open
Buffer channel

Demod amplifier I fall Limit

Figure 8. Ibox actuator model functional diagram.

Limit Test

(S/370) + 1

(S/3320) + 1
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the data stream on a dedicated 1553 bus to the aircraft

instrumentation system for recording.

GROUND TESTING

Flight qualification tests of the smart actuator

performed by the manufacturer were limited to

vibration testing, NASA DFRC performed altitude

and temperature tests. Upon successful completion of

vibration tests, the flight unit was delivered to NASA

DFRC for system integration testing in the NASA

Research Aircraft Integration Facility (RAW).

System Integration Tests

System integration tests were performed with the F-18

hardware-in-the-loop (HIL) test bench. The F-18 test

bench contains two FCC's and the capability to

integrate analog models of surface actuators or real

flight hardware. In addition, the test bench can be

integrated with the Iron Bird (which is a retired

F-18 airframe) as well as with the F-18 real-time

simulation. For the purpose of conducting

comprehensive integration tests, the smart actuator

system hardware (including the interface boxes) was

installed on the F-18 Iron Bird and integrated with the
test bench. Test bench and Iron Bird modifications for

integration included system control switches,

representative hydraulic lines, and failure insertion

capability.

System integration tests included functional tests,

performance tests, verification and validation tests,

and failure modes and effects tests. The performance

of the actuator proved to be acceptable with test

requirements throughout all of the system integration

tests. As shown in figure 9, the no-load frequency

response of the smart actuator system compared well

with that of the production actuator on the right

aileron. The hydraulic line size reduction, however,
reduced the normal no-load slew rate of the smart

actuator by 10 percent. The reduced slew capability
from 7.6 in/sec to 6.8 in/sec resulted in an intermittent

IBIT failure for position rate tests. Although the lower

slew rate met design specifications, the smart actuator

self-test software limit was reduced to 6.7 in/sec,

which remedied the IBIT anomaly.
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Figure 9. Smart actuator frequency
comparison with standard actuator.

response

The use of fiber optics simplified the system
integration on the Iron Bird. However, this new

technology complicated the approach for verifying
and validating system operation. During initial system
integration efforts, it became apparent that the optical
data stream could not be objectively verified without
some intrusive means. Any attempts to tap the
1773 data link affected the optical power and resulted
in communication faults. Because the system was
designed for point to point communication links, the
optical power loss eliminated the possibility of adding
an RT to the bus as with MIL-STD-1553 architectures

for monitoring. To overcome this obstacle, 1773 data

communication was confirmed by using special test



software loads in the interface boxes to create a

MIL-STD-1553 data stream. In this respect, the
interface box had become an invaluable tool for

system tests involving the fiber optic data link.

A significant observation was made during actuator

integration with the DCI interface box. High optical

power levels input to the receiver were shown to create

up to a 40 percent duty cycle distortion in the detected

1773 waveform. The result was the possibility of

receiver saturation, so an effort to define a nominal

optical power range was undertaken. DCI conducted

sample tests of fiber optic transmitter and receiver

components with the same part number. The results

showed a wide variation in transmitter output and

receiver sensitivity. The lack of consistency of

industry fiber optic components made it very difficult

to establish a general setup criteria for the 1773 data

links, and is unacceptable for aerospace applications.

A similar lack of consistency in industry fiber optic

connectors is discussed in reference [4]. The receiver

circuit also displayed a dc shift in the detected

waveform, which was significantly reduced with

minimum optical power levels.

Environmental Testing

Because the smart actuator had completed vibration

tests, vibration tests conducted at NASA DFRC were

only performed for the interface boxes. These tests

were completed without any significant difficulties.

Temperature and altitude tests were performed on the
interface boxes and the smart actuator. These tests

were performed with the smart actuation system

operational.

Temperature and altitude testing of the actuator system

revealed additional sensitivities with respect to the

optical components of the 1773 data link. Initial
environmental tests were intended to validate the

system operation through the required altitude range

(2300 ft to 50,000 fl) and the required temperature

range (-65 °F to 220 °F). The smart actuator and the

interface boxes were placed in separated chambers
because the actuator was to be installed in an

environmentally uncontrolled location in the aircraft,
while the interface boxes were to be located in an

environmentally controlled avionics bay.

Although no anomalies were observed throughout the

altitude tests, the actuation system consistently failed

as the interface box temperatures and smart actuator

temperature reached a difference of 100 °E Bench

testing of limited optical component samples by DCI

documented performance variations over the

temperature range of 77 °F to 175 °F. Optical receivers
exhibited increased sensitivity of up to 50 percent with

increased temperature. Similarly, optical transmitter

power output decreased 20 percent with increased

temperature.

Additional DFRC environmental temperature tests
confirmed DCI test data. Receiver saturation was an

immediate concern and previous test data indicated

that minimum optical power to the receiver reduced
1773 waveform distortion. Based on this information,

a fiber optic sensitivity analysis was conducted in the

NASA DFRC environmental lab. Allowing the smart

actuator to reach a nominal operating temperature of
150 °F, both interface boxes 1 and 2 were thermally

cycled from-10 °F to 170 °E At specified temperature
intervals, the minimum optical power level for each
1773 communication link was determined. As shown

in table 2, interface box 1 and 2 failure power levels

decreased 21.7 percent and 18.6 percent, respectively,

with increased temperature. This corresponds to 2.13

dB and 1.78 dB variation in optical power over the

temperature range.

Table 2: Fiber optic thermal sensitivity data.

Interface box 1 Interface box 2

transmitter transmitter

Temperature, Failure optical Failure optical

°F power level, pW power levei,pW

-10

10

30

5O

70

90

110

130

150

170

17.25

17.13

16.87

16.48

15.94

15.25

14.98

14.59

14.02

13.50

19.52

19.42

19.20

18.75

18.31

17.70

17.34

17.08

16.51

15.89



Giventhetemperatureprofilesthattheinterfaceboxes
andthesmartactuatorweretobeexposedtoin flight,
the datain table2 doesnotrepresenta worst-case
conditionfor thesystem.As a result,anadditional
thermal study was performedto determinethe
minimum optical power requirementfor system
calibration. The environmentalconditionswere
definedsuch that each 1773data link wouldbe
exposedtoahightransmittertemperature(160°F)and
a low receivertemperature(0 °F). This condition
resultedin lowreceiversensitivityandlowtransmitter
output:a low light condition. The minimum optical

power was determined by measuring the power level at

which the system communications faulted and adding

a 3-dB safety factor to account for dynamic variation

with temperature. By calibrating the system to the

minimum optical power level, receiver saturation and

waveform distortion were minimized. Because of the

wide variations in the performance of individual

electro-optic components, each receiver required a

unique power level, as shown in table 3.

Table 3: Fiber optic system receiver power

requirements.

F.O. com

Transmitter

Smart act ch 1

Smart act ch 1

Smart act ch 2

Smart act ch 2

Ibox 1 or 2

Ibox 3 or 4

9onents

Receiver

Ibox 1

Ibox 2

Ibox 3

Ibox 4

Smart act ch 1

Smart act ch 2

Required F.O.

power level, laW

2.7+1.0

5.47+ 1.0

4.76+ 1.0

2.18+1.0

15.92+1.0

19.95+1.0

In all cases, optical attenuation was necessary to

achieve the required power levels. Fiber optic

attenuation was achieved by introducing an air gap

between the fiber optic connector and the optical

transmitter. The air gap was adjusted by inserting shim

spacers over the end of the SMA connector on the

transmission side of each data link. Shim spacers were
available in assorted thickness from 2-20 mils.

Figure 10 shows the fiber optic connector, while

Figure 10. SMA fiber optic connector.

10



figure 11 illustrates how shim spacers of varying
thickness were used. Although this was a very simple

solution to a complex problem, subsequent

environmental tests were completed without any

failures. The calibration procedure was documented

and utilized throughout the flight test program for

checking fiber optic light levels.

ED97-43948-1

Figure 11. SMA connector with calibration spacers.

As an additional environmental study, terminated and
unterminated fiber optic cables were subjected to

8 thermal cycles between -40 °F and 220 °E It was

observed that the cabling hardware could also
contribute to variations in the optical power level.

Figure 12 illustrates the shrinkage (0.87 in.) of the

outer jacket that was induced by thermal cycling. As

shown in figure 13, a piston-like effect was also
observed in the terminated cable. The SMA crimp and

cleave termination did not utilize any epoxy or
mechanical design to fix the fiber, which resulted in

fiber exposure. Because the termination was crimped
onto the outer jacket of the cable, the amount of

exposed fiber was a function of outer jacket shrinkage.

Thermal testing indicated that the fiber could be
exposed as much as 50 mils. It is important to note that

since the completion of this program, pre-conditioned

fiber optic cable is now available and improvements in
fiber optic termini have been made. Nonetheless, these

factors must be considered when generating fiber optic

system specifications. Additional issues regarding
fiber optic cable assemblies are discussed in

reference [5], and specifications regarding the

termination and installation of fiber optics are
documented in NASA Standard 8739.5 [6].

Aircraft Installation

Upon completing system integration tests and
documenting the valuable fiber optic lessons in the

form of aircraft procedures, the smart actuation system
was installed on the F-18 SRA. There were no

anomalies throughout the installation, calibration, and
functional checks of the smart actuator. The use of

fiber optics significantly simplified the entire

installation process. This was primarily because of a
significant reduction in wire count as opposed to the

production actuator interface. Table 4 contains data
that supports this benefit of fiber optic technology. An

aggregate reduction of the cable harness components

was just over a factor of 3 (69.2 percent reduction),
which directly relates to a total weight savings of

62.3 percent. In addition, the installation time was
reduced by a factor of 2 when compared to the

production actuator wiring installation.

Table 4: Smart actuator wire reduction data.

Standard
aileron
actuator

Smart
actuator

Percent

change

Total number
of electrical
conductors,

47 ft

26

4

-84.6

Total Total Total weight
number harness (including
of fibers, items termination

47 ft hardware)

0 26

4 8

N/A -69.2

10.37 Ib

(4705.5 gm)

3.91 lb

(1774.5 gm)

-62.3

FLIGHT TEST

The smart actuator program completed 31.5 hours of
flight test time over a period of 9 months. The
objectives of the flight test program were as follows:

• Demonstrate the operation of the smart actuator
throughout the F-18 flight envelope using
increasing actuator load as the primary test
parameter.

• Evaluate the smart actuator performance using
the production actuator as the baseline.

• Evaluate the performance of fiber optic data
links.

11



Figure 12. Fiber optic cable shrinkage.

Figure 13. Fiber exposure of SMA connector.
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Thesmartactuatorwasevaluatedduringthefollowing
flighttestmaneuvers:

• Lateralstickdoubletsandfrequencysweeps
• Aileronreversals

• Levelturns(maximumg or ct = 20 °)

• lg high alpha

• 4g loaded rolls

• Mission profiles

Actuator Performance

Performance evaluation of the smart actuator, using

the production right actuator as a baseline, was
initially conducted by performing maneuvers both to
the right and the left. However, without computer-
generated test inputs, the maneuvers were not
consistent enough to allow for direct comparison.
Because the F-18 control system provides equal and
opposite sign commands to the ailerons, acceptable
comparisons were made with inverted right aileron
position data. Although the aerodynamic loads were
not identical, this method was suitable for comparison.

The performance and reliability of the smart actuator
throughout the flight test program was exceptional.
There were no in-flight anomalies, and the smart
actuator was virtually identical in performance to the
production F-18 aileron actuator. Flight test data

presented in figures 14 and 15 show the performance
of the smart actuator during the execution of an aileron
reversal at two different dynamic pressure (q) flight
conditions.

Figure 14 represents the aileron reversal performed
at a low-q flight condition (88 lb/ft2). In figure 14(a)

and 14(b), the smart actuator closely tracks
each corresponding channel position command.
Figure 14(c) illustrates the performance of the smart
actuator, which controls the left aileron, compared to

that of the standard right aileron actuator. Again, the
flight data show that the smart actuator performance
correlated very well with the production actuator.

The flight data presented in figure 15 represents
an aileron reversal performed at a high-q flight
condition (884 lblft2). In this case, the actuator loading

is significantly higher. As expected, the actuator
clearly illustrates significant stall character-istics.
Figures 15(a) and 15(b) show that the actuator can not
achieve the commanded position in the area where it is
used to reverse aircraft rolling. In this high
aerodynamic load condition, the smart actuator differs

from the position command as much as 0.7 in.

However, when compared to the performance of the
standard right aileron actuator (fig. 15(c)), the
difference is less significant. This indicates that the
right aileron actuator is also at a stall condition. The
difference in maximum position between the smart

Actuator
position,

in.

1.0

.5

0

--.5

- 1.0

- 1.5
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Figure 15. Concluded.

actuator and the inverted right aileron actuator is due
to unsymmetric aerodynamic loads. The position of
the aileron surface at which the aerodynamic forces
result in a zero-hinge moment is approximately -4 °
(trailing-edge up). Since aircraft roll is commanded
with differential aileron, a differential 10° aileron

position, for example, will not result in symmetric
actuator loads.

In terms of aircraft control, the smart actuator

performance proved that local or smart control of
surface actuators is possible. It should be emphasized
that this area of evaluation must be separated from the
fiber optic data that this program provided.

Fiber Optic Maintenance Data

As discussed in the Smart Actuator Design

Description section of this paper, the front end

interface of the smart actuator could have been any

type of serial interface. The system calibration issues
that were discovered were related to the selection of an

optical interface. In this respect, the fiber optic

experience gained through the smart actuator program

was invaluable. Fiber optic calibration data was

recorded throughout the flight test program of the

smart actuator. Although there were no in-flight
anomalies due to 1773 communication faults, valuable
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resultswereobtainedthroughperiodicrecalibrationof
the optical power levels.Figure 16 containsthe
required optical calibrationdata for each1773
transmitter.Again,notethateachcommunicationlink
requiresa uniquetransmitterpowerlevel,asdefined
byinitial environmentaltests.Throughtheadjustment
of shimspacers,sufficientcalibrationlevelsof all
1773communicationlinkswereachieved.
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Figure 16. 1773 fiber optic transmitter power.

Figure 17 shows the attenuation spacing for each data
link that was required in order to achieve the system
optical power levels presented in figure 16. All of the
data links show a similar trend. As shown in figure 17,

the 1773 links required increasing attenuation spacing
throughout the flight test program. The last two
calibration data points also indicate that the optical

power of the system began to stabilize and level out.
This corresponds to approximately 20 flight hours.
Since there were many potential causes, it is difficult
to identify which contributing factors stabilized as a
function of operational time. It is reasonable, however,
to deduce that system components began to harden
and become conditioned to thermal variations. This

burn in period should be considered in developing
system integration test plans. A potential improvement
in this specific fiber optic system would be dynamic
gain-control of the optical power such that sufficient
power margin is maintained.
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Figure 17. Required 1773 fiber optic attenuation.

CONCLUSIONS AND RECOMMENDATIONS

The smart actuator flight test program has
demonstrated that in-flight local control, fault
monitoring, and redundancy management of surface
actuators is possible. As shown through flight test, the
performance of the smart actuator was exceptional and
compared very well to that of the standard F- 18 aileron
actuator.

Although the serial interface of the smart actuator
could have been a conventional electrical interface,

valuable fiber optic experience was gained through the
use of 1773 communication links. System integration

was greatly simplified, reducing both installation time
and cable harness weight significantly. The fiber optic
interface, however, complicated system integration
tests. It was not possible to directly monitor the optical
data stream without inducing communication faults.
There is a need for in-line fiber optic inter-connect
hardware with low insertion loss that will allow for

such monitoring.

Many contributing factors resulted in insufficient
optical power margin. Because wide variations in
optical transmitter output and receiver sensitivity
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existed,uniqueopticalpowerlevelsforeachdatalink
wererequiredin orderto avoiddetectedwaveform
distortion and recei{,ersaturation.In addition,
environmentaltesting revealedsignificantthermal
sensitivities among the various fiber optic
components,and thesesensitivitiescontributedto
opticalpowerlevelvariations.Althoughacalibration
procedurewas developedto accountfor these
variations,thisprocedureisnotpracticalfor aircraft.
Therefore, tighter specificationof fiber optic
componentsisrequiredin orderto maintainadequate
optical powerlevels. Specifically,thermalperfor-
mancespecificationsof electro-opticcomponents,
preconditionedfiberopticcables,andimprovedcable
terminationswouldsignificantlyreduceopticalsystem
performancevariationswhicharecausedbyenviron-
mentalconditions.Dynamiccontrolof opticaltrans-
mitteroutputcouldimprovesystemperformance.

Thesmartactuatorprogramidentifiedcriticalareasof
developmentfor thegeneraluseof fiberopticsin
aerospacevehiclesystems.Thesecriticalareasapply
to a widerangeof fiberopticapplications,andwill
impact system operationand reliability unless
particularattentionandsignificantprogressis made.
Fiberopticterminations,cableharnesscomposition,
electro-opticcomponents,and their variation to
temperaturewill affecttheoperationalmarginof any
fiberopticsystem.In ordertoreapthemanypotential
benefitsthat fly-by-light technologyoffers,design
considerationsin theseareasmustbeincorporatedinto
futureaerospacevehiclesystems.
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